GENERALIZED KINETIC MODEL OF THE CREEP AND RUPTURE STRENGTH
OF A STRAIN-HARDENING MATERIAL
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The author of [1] proposed a generalized kinetic model of the creep and rupture strength
of metals in the absence of strain-hardening:

p = Bf(s) exp (qa), p(0) = 0,
a = Lo (o) exp (xa), a(0) =aq,, a(ty) = a,.

(1)

Here, p is the creep strain; o, stress; a, structure parameter; t,, time to failure; B, L,
q, kK, ¢4, and a ., material constants; q 2 0, B 2 0, L 2 0; the functions f and ¢ are deter-

mined to within the constant multiplier; the dots denote differentiation with respect to
time t; the temperature is assumed to be fixed.

Model (1) is a generalization of four classical models of the second and third stages
of creep [1]. It does not describe the strain-hardening stage, which usually conforms sa-
tisfactorily to strain-hardening theory:

p = h(e)p~*, p(0) =0 (2)
(A is a material constant).

There are two adequately substantiated theories which consider the effect of strain-
hardening. The strain relation [2, 3]

p = f(o)p~* exp (ap), p(0) = 0 (3)

(0 is a material constant). The energy relation [4-6]

A = f,(6)A-HW¥(A), (4)

t
where f1:=j0dp is the specific energy dissipated during creep; at A = 0 {(absence of strain-
0

hardening effect), ¥(A) = (4, — A)%; A, and o are material constants.

In the present study we propose to generalize (1). At the first stage of creep, this
generalization would be equivalent to strain-hardening theory (2) and would contain Egs.
(3) and (4) as special cases.

The validity of (4) was checked experimentally during standard loading in the presence
of strain-hardening. In this instance, during the stage of transient creep [¥(A) = const],
model (4) is equivalent to the strain-hardening theory. Under nonsteady loading conditions,
(2) conforms to the experimental results more closely than does the energy model in [7, 8].
The effects sometimes seen with a stepped or momentary increase in load are complex in nature
and cannot be described either by strain-hardening theory or by models of the type (4) [8].
Thus, to describe the nonsteady section in model (1), it is necessary to introduce a second
structure parameter — creep strain. Then, with allowance for the similarity of the creep
curves and Eq. (2), model (1) takes the form

p=Bjp M exp(qa), a= Lop~* exp (a)

(X, and XA, are material constants). In order for model (4) to be a special case of this
relation, it is necessary to set A; = A, = A. We finally obtain
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p = Bf(o)p=* exp (qa). p(0) = 0,

a = Lg@)p~rexp(xa), a(0) =a, a(t,)=a,. )
For the first stage (a = a,), model (5) is equivalent to (2).
Let us examine special cases of model (§).
1. q = «(r==). Then, a=a,+ 2L/B Z:Z.Y?ég dp) and model (5) can be written as
0
z = Dg(a)p~* exp (az), 2(0) = 0 (o = qL/B, (6)

D = B exp (qa,)).

With f =9 (z = p), models (6) and (3) are equivalent. Under the conditions of a constant
stress, p = (£f/9)z, and Eq. (6) has the form

z = D®(o)z-* exp (az), 2(0) = 0

1
(©(0) = [f(0)1*[g(c)1'+2). (6"
When q # k, in Egs. (5) it is convenient to make the substitutjon of variables = sgn
B . .
") =y exrlald — =)} . '
p=Df@)p~H, I=sgn()De(0)p ", 1(0)=1y [(ts)=Ls
(5")
9 . N La |, 1 >0,
mwml—w_%,DﬁBF@Oh;yS@OFw_l’r<&
2. q < «k(r €0), for this [ =1, —z and (5) is written 1n the form
z = De(o)p~H{l, — 2)7". (7)
For ¢ = const, Eq. (7) is changed to
z = D®(o)z=MI, — z)- V. (7"
With 9(g) = of(o)(z = A), model (7') corresponds to energy model (4).
3. q>«k(r>0)., Then 2 = %, + z, and model (5) takes the form
i = D(o)p~Mly + 2)". (8)
With a constant stress,
z = DD(o)z~ M1, + z). (8")

In the general case, in model (5) it is necessary to find five material constants (two
of the constants — such as L and k — can be chosen arbitrarily [1]): D, A, r, %,, and Zys
where z, = z(t,). It is also necessary to find the two functions f(o) and ¢ () in this
model. The constant D and the function ®(¢) are determined from the rupture-strength curve
t, = ty(o). The function f(o) is found from the condition of similarity of the curves
[?(c)/f(0)]p with different stresses [in particular, it is found from the condition (?/f)-
p(t*) = const]. The constants A, r, and £, are obtained from the corrected creep curve
t/t, = V(p, A, 1, 24).
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TABLE 1

T, < /
750 0.6
86y .3
850) 0,12
380 0,06
TABLE 2
T, Clo, MPa| m o ¢ T,¢c |o, MPa | H, % ¢
220 1,028 0,9405 150 0,809 0,9997
300 0,4017 0,9353 850 160 1,035 0,9986
750 310 (4,4025 0,9854 200 1,183 0,9086
350 0.52 0,9641
200 04,5263 0,9573 100 0,7155 0,9528
200 1,047 0,9622 134 0,67 0,9748
800 220 0,889 0,9727 880 140 0,8384 0,9871
250 Q0,747 0,9764 160 0,872 0,977

To simplify the calculations, it is important to have an analytic expression for the
function V. This is possible only for integral values A =1, 2, ... . As thecalculations
we performed showed, this statement is valid for A > 1. At X < 1, the section of transient
creep is not usually pronounced and can be ignored if allowance is made for the third sec-
tion. As an example, the solid lines in Fig. 1 show data from [9] on the creep of heat-re-
sistant nickel alloy EI826. Table 1 shows values of the constant A found from the initial
sections of creep curves. As a first approximation, the experimental data are satisfactorily
described by Eq. (6) with A = 0. Here, the creep strain [1]

p=H{)In{l —at/t,)?
(H (0) = (1ja) [(0)/9 (9), = 1— exp(—azy)).

Theoretical values of H and ¢ are shown in Table 2, where the temperature values correspond
to Fig. la-d. The dashed lines, constructed from Eq. (9), satisfactorily describe the ex-
perimental results.

(9)

In accordance with model (5), in the general case we write the creep curves in the form

Uty =17 (2) — J O/ (z) — J (O)], (5")
igzhexp(——iz)dk
where J(z) = iS (I, — 2t dz,
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for cases 1-3, respectively. Integrating these relations with A =1, 2, ..., we obtain the
following for cases 1-3:

A
J (3) = — exp (— a2) hZ=0 Tu (2)/ak 15 (6")

A

B
J (@) = (ly— )1 ¥ Za @)l ; '

A
R
o+ 2= 2 (— O %

, T#1,
k=0 (l—r+1)(k—r)...(x~r—k+1) s

J(@) = (8")

P S
>

-1

. J, () Ik "

— 1)k h o — 1Y 1

kgo( ) AA—1 ... (h—k) + (=1 hin(,+2), r=1
2, k=0,

Here, J,(z) = Ah—1) ... (—k+ D *, k=12 ..}

In the general case, it is necessary to find three constants in Eq. (5"): X, r (or
a), and 2,3 A is determined from the sections of transient creep in accordance with (2),
while the other two are determined numerically. In particular, when the number of constants
can be reduced to two {1} — cases 1 and 2 with 10==z*,case 3 with £ = 0, etc. — both con-
stants can be determined numerically in accordance with Egs. (5'")-(8").

Figure 2 (T = 565°C) shows the creep curves of steel EP4s4 [3]. The creep of EP44 is
satisfactorily described by the strain model (z = p). The value of r turns out to be fairly
large (|r| = 10), so as the theoretical value we took r = =. With A = 1, we write Eqs. (5")
and (6'") in the form

t Vo —exp(—ap) (pla+1/2%)
Ly ta? — exp (— apy) (puton 4+ tia?) (")
It can be seen from the dashed lines in Fig. 2, constructed from (6"') with p, = 7.5% and a =

1.3 that the agreement with the experimental results (solid lines) is satisfactory.

Figure 3 shows creep curves of titanium alloy 3V at room temperature [4] (20°C). Here,
the energy model z = A is realized. It is evident from the calculations that the creep
process is described by case 2 with A = 5. In this instance, it can be approximately assumed
that 2, = A, [1], and Eqs. (5") and (7") are changed to:

5
t A § Ur D iy (AR
== (L= A/A,) '“’Z it . driy )(Z*_), (7")
k=0
The dashed lines constructed from (7"') with r = —4.8 coincide satisfactorily with the solid

lines (experiment).
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DESIGN AND LAYOUT OF LAYERED PLATES

A. G. Kolpakov UDC 639.3

Calculation of the stiffness characteristics of layered plates is carried out on the
basis of asymptotic studies for the problem of elasticity theory in thin (thickness h - 0)
regions [1]. Application to the equations obtained of methods in [2, 3] made it possible
to solve the problem of designing layered plates with a prescribed set of stiffness charac-
teristics.

Characteristic Equations for Layered Plates. An asymptotic analysis was provided in
[1] for the problem of elasticity theory in a thin region whose thickness h tends toward
zero, and two methods were proved which may be used in designing layered plates: a limiting
transition with h > 0 and the same limiting transition invoking a cellular problem (prcblem
L in the terms of [1]). 1In the first case we obtain explicit equations for calculating stiff
ness and, in the second, the same equations but with prior solution of the cellular problem.
In this work we follow the second path in studying the mechanics of layered plate bending.

Let the plate in question be formed of layers of uniform isotropic materials (parallel
planes 0x,X,). Plate thickness h < 1. We cover the plate with a rectangular network with
a side ~h long. An element of this network P} separates a cell Yy = Py x [~h/2, h/2], called
the cellular periodicity. In variables ¥ = 2x/h a cell of periodicity Y is converted into

Fig. 1
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